Skip to main content

Posts

Featured

Antiderivative of the natural logarithm

We wish to determine the antiderivative $\int \ln(x)\, dx$. We can solve this with integration by parts by rewriting the integrand as $1\cdot \ln(x)$, and using the facts that $\int 1 \,dx = x$ and $\left(\ln(x)\right)'=\frac{1}{x}$: \begin{align} \int \ln(x)\, dx &= \int 1\cdot \ln(x)\, dx\\ &= \int 1\, dx\cdot \ln(x) - \int \left(\int 1\, dx\right) \left(\ln(x)\right)'\, dx \\ &= x \ln(x) - \int x \cdot \frac{1}{x}\,dx \\ &= x \ln(x) - \int 1 \,dx \\ &= x \ln(x) - x\,, \end{align} and we've recovered the familar expression.

Latest posts

Power function derivative

The Binet equation

Angular momentum and torque

Central forces and angular momentum

Calculating colors

Colors and temperature

The Life of a Star

Beyond the neighbourhood

The Hertzsprung-Russel Diagram

Star size distribution: A correction