Antiderivative of the natural logarithm
We wish to determine the antiderivative $\int \ln(x)\, dx$. We can solve this with integration by parts by rewriting the integrand as $1\cdot \ln(x)$, and using the facts that $\int 1 \,dx = x$ and $\left(\ln(x)\right)'=\frac{1}{x}$:
\begin{align}
\int \ln(x)\, dx &= \int 1\cdot \ln(x)\, dx\\
&= \int 1\, dx\cdot \ln(x) - \int \left(\int 1\, dx\right) \left(\ln(x)\right)'\, dx \\
&= x \ln(x) - \int x \cdot \frac{1}{x}\,dx \\
&= x \ln(x) - \int 1 \,dx \\
&= x \ln(x) - x\,,
\end{align}
and we've recovered the familar expression.
Comments
Post a Comment