The Gaussian Integral
Here I present the classic and very elegant proof of the value of Gaussian integral:
\begin{align}
I = \int\limits_{\mathbb{R}} e^{-x^2}\,\mathrm{d}x = \sqrt{\pi}\,.
\end{align}
The starting point is writing the square of the integral, making a change of variables, and rearranging:
\begin{align}
I^2 &= \left(\int\limits_{\mathbb{R}} e^{-x^2}\,\mathrm{d}x \right)^2 \\
&= \int\limits_{\mathbb{R}} e^{-x^2}\,\mathrm{d}x \cdot \int\limits_{\mathbb{R}} e^{-y^2}\,\mathrm{d}y\\
&= \iint\limits_{\mathbb{R}^2} e^{-x^2}\cdot e^{-y^2} \,\mathrm{d}x \,\mathrm{d}y \\
&= \iint\limits_{\mathbb{R}^2} e^{-\left(x^2 +y^2\right)} \,\mathrm{d}x \,\mathrm{d}y\,.
\end{align}
The integral can be done by shifting to polar coordinates with $r^2= x^2 + y^2$. The area element is $\mathrm{d}x\,\mathrm{d}y = r\,\mathrm{d}r\,\mathrm{d}\theta$. The squared integral is then
\begin{align}
I^2 &= \int\limits_{0}^{2\pi}\left.\int\limits_{0}^{\infty} \left.e^{-r^2} r \,\right.\mathrm{d} r\right.\,\mathrm{d}\theta\\
&= 2\pi\int\limits_0^{\infty} e^{-r^2}\,r\,\mathrm{d}r\\
&= 2\pi\cdot \left[-\frac{1}{2}e^{-r^2}\right]_0^{\infty}\\
&= \pi\,.
\end{align}
It follows immediately that $I=\sqrt{\pi}$.
Comments
Post a Comment